5 Must-Have Features in a hydroxyethyl cellulose hec
Hydroxyethyl Cellulose (HEC): Non-ionic Thickener and ...
Rated 3.50 out of 5 based on
If you are looking for more details, kindly visit hydroxyethyl cellulose hec.
customer ratingsConformation and Structure of Hydroxyethyl Cellulose ...
The solution properties of a water-soluble chemically modified cellulose ether, hydroxyethyl cellulose (HeC), were examined using static light scattering (SLS), dynamic light scattering (DLS), small-to-wide-angle neutron scattering (S-WANS), small-to-wide-angle X-ray scattering (S-WAXS) and viscometric techniques at 25 °C. The examined HeC samples had average molar substitution numbers ranging from 2.36 to 2.41 and weight average molar masses (M w ) that fell within a wide range from 87 to kg mol 1 . Although the relationship between the determined radius of gyration (R g ) and M w was described as R g M w ~0.6 , as is observed usually in flexible polymer solutions in good solvents, the observed scattering vector (q) dependencies of excess Rayleigh ratios were well interpreted using a rigid rod particle model, even in high-M w samples. Moreover, the ratios of the formed particle length (L) evaluated assuming the model for rigid rods to the determined R g showed the relationship LR g 1 ~ 3.5 irrespective of M w and were close to those theoretically predicted for rigid rod particle systems, i.e., LR g 1 = 12 . The observed SLS behavior suggested that HeC molecules behave just like rigid rods in aqueous solution. As the L values were not simply proportional to the average molecular contour length calculated from the M w , the chain conformation or structure of the formed particles by HeC molecules in aqueous solution changed with increasing M w . The q dependencies of excess scattering intensities observed using the S-WANS and S-WAXS experiments demonstrated that HeC molecules with M w less than 200 kg mol 1 have a diameter of ~1.4 nm and possess an extended rigid rod-like local structure, the size of which increases gradually with increasing M w . The observed M w dependencies of the translational and rotational diffusion coefficients and the intrinsic viscosity of the particle suspensions strongly support the idea that the HeC molecules behave as rigid rod particles irrespective of their M w .
We recently reported that MC samples with a wide range of M w possess a highly elongated rigid rod-like conformation and structure in aqueous solution at room temperature (25 °C) and that these MC samples maintain high solubility [ 16 , 17 ]. As many macromolecular scientists believe that water-soluble cellulose derivatives of sufficiently high M w behave as semiflexible polymer chains with persistence lengths of, e.g., ~5 nm and act as flexible chains in aqueous solutions [ 18 , 19 ], the rigid rod-like structure found in MC samples over a wide M w range is rather curious. Many investigators might ask the simple question Do HeC samples that exhibit stable water solubility without showing clouding behavior in aqueous solutions also have conformations and structures identical to the rigid rod-like particles found in MC samples? To obtain a clear answer to this question, we decided to investigate the conformation and structure in aqueous solution at room temperature (25 °C) of HeC samples with an MS value of ~2.4 and a wide range of M w values ranging from less than 10 2 kg mol 1 to greater than 10 3 kg mol 1 using scattering techniques such as static light scattering (SLS), dynamic light scattering (DLS), small-to-wide-angle neutron scattering (S-WANS) and small-to-wide-angle X-ray scattering (S-WAXS) techniques and viscometric measurements. As the chemical modifications, MS values and M w values of the HeC samples examined in this study do not differ from those of many commercially available HeC samples, the information obtained on the conformation and structure of the HeC samples in this work provides basic fundamental knowledge related to many types of applications of HeC in aqueous solution.
Hydroxyethyl cellulose (HeC) is a water-soluble chemically modified cellulose ether that is derived from cellulose by additional reaction with ethylene oxide by many manufacturers at present [ 1 , 2 , 3 ]. As HeC is obtained from an abundant and eco-friendly natural product, cellulose, it has been produced by many chemical manufacturers and is used in many practical applications in daily life; one such use is as an effective rheology modifying agent [ 4 , 5 , 6 , 7 , 8 ]. The fascinating rheological behavior of aqueous HeC solutions, including their shear and extensional behavior, has attracted much attention from rheologists in recent years [ 9 , 10 ]. The water solubility of HeC samples is controllable by the molar substitution number (MS) of the hydroxyethyl groups of each constituent glucose ring; most commercial water-soluble HeC samples have MS numbers between 1.3 and 3.4, and HeC samples maintain rather high water solubility over a wide temperature range irrespective of the weight average molar mass (M w ) [ 11 ]. Other water-soluble chemically modified cellulose ethers such as methyl cellulose (MC) and hydroxypropylmethyl cellulose (HpMC) show a characteristic temperature dependence of water solubility; MC and HpMC are soluble in water only at temperatures lower than, e.g., 40 °C and show rather sharp clouding behavior and sometimes gelation above this temperature, depending on the MS numbers of the hydroxypropyl groups and the degree of substitution (DS) by methyl groups in each glucose unit [ 12 ]. The mechanisms through which the clouding and gelation phenomena observed in aqueous MC solutions occur have been investigated in detail [ 13 , 14 ]. The characteristic clouding behavior is understood to be a steep dehydration phenomenon that occurs with increasing temperature and in which the molecules fail to achieve the critical hydration state necessary to maintain water solubility. In the case of water-soluble HeC samples, the temperature dependence of the hydration number (n H ) per glucose ring is much weaker than that of HpMC and MC samples, and n H does not fall to the critical value at which the HeC clouds or gels in water, even at temperatures higher than 70 °C [ 15 ]. Thus, HeC samples possess stable fluidity even at higher temperatures without showing clouding and gelation phenomena; thus, they are useful in applications that require stable solubility and fluidity and provide the desired rheological behaviors in aqueous solutions over wide temperature ranges from 0 to 90 °C.
S-WANS experiments were conducted at the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex, J-PARC (Tokai, Japan), using a small-angle neutron scattering facility (TAIKAN) [ 20 ], which is installed on a beamline BL15. The range of the scattering vector, q, used in the S-WANS experiments covered from 9.0 × 10 2 to 1.0 × 10 2 nm 1 . As sample cells for S-WANS experiments, square-type quartz cuvettes with a neutron beam path length of 4.0 mm were used. The standard exposure time was 2 h for each sample solution. S-WANS measurements were conducted at 25 °C. The obtained scattering data were converted to absolute values by use of a standard glassy carbon data. Absolute scattering value for the glassy carbon had been precisely determined.
SLS and DLS measurements were conducted using an extensively modified DLS originally manufactured by Otsuka Electronics Co., Ltd. (Osaka, Japan). A single-frequency Sapphire laser, SF488-100, Coherent, Inc. (Santa Clara, CA, USA), at a wavelength of λ = 488.0 nm, was equipped with the modified DLS as a light source. As a light detector, a photomultiplier, RU-01, Hamamatsu Photonics K. K. (Hamamatsu, Japan), was installed. To record intensity fluctuations in scattered light as a function of time, an LSI correlator, LS Instrument AG (Fribourg, Swiss), was used. An autocorrelation function of the scattered light intensity was precisely calculated by the correlator. A Pyrex glass tube which possesses an inner diameter of 19.0 mm and a thickness of 0.5 mm was used as a measuring cell. The measuring temperature for both SLS and DLS measurements was 25.0 °C. The scattering angle (θ) was varied from 30° to 150° in 10° increments. The magnitudes of the scattering vectors covered from 9.78 × 10 3 to 3.65 × 10 2 nm 1 . Toluene was employed as the standard material for scattered light intensity in the SLS experiments. The refractive index increment (n/c) of the HeC in aqueous solution was determined to be 0.139 mL g 1 by use of an Abbemat MW multiwavelength refractometer, Anton Paar (Graz, Austria), at a wavelength of λ = 486 nm. This value was used to determine the M W values for each HeC sample from the SLS data. n/c = 0.138 mL g 1 was also determined at a different wavelength of λ = 589 nm 1 , and the λ dependence of n/c of the HeC samples was weak.
HeC samples at several concentrations (c), each of which was lower than the reciprocal of the intrinsic viscosity ([η] 1 ) resulting from viscometric measurements, were used in the SLS and DLS experiments. The c values of the HeC87 samples in D 2 O used in the S-WANS measurements were c = 5.0 × 10 3 and 1.0 × 10 2 g mL 1 . The c values in prepared solutions of the samples used in the S-WAXS experiments were c = 2.5 × 10 3 , 5.0 × 10 3 and 1.0 × 10 2 for HeC87, c = 1.0 × 10 3 for HeC and c = 8.0 × 10 4 g mL 1 for HeC.
The five HeC samples investigated in this study were supplied by Daicel Corporation (Tokyo; Japan), and were used without any further purification. The molar substitution numbers, MS, for each HeC sample were determined by use of the so-called hydrogen iodide decomposition reaction method, and the weight average molar masses were determined using SLS techniques. The determined MS values were somewhat dependent on the sample species and ranged from 2.36 to 2.41, as summarized in . The samples were coded using numbers related to their M w (in kg mol 1 ); for example, the HeC sample with M w = 87 kg mol 1 was coded HeC87. For each HeC sample, the polydispersity index, M w M n 1 , in which M n indicates the number average molar mass, was roughly determined using size-exclusion chromatography. The determined M w M n 1 values of all samples were greater than 2, as summarized in .
3. Results and Discussion
3.1. SLS Behaviors
Using values of λ = 488.0 nm for light course and n/c = 0.139 mL g1 for the examined HeC in aqueous solution, the apparatus constant (K) of the system was determined to be K = 3.89 × 107 cm2 mol g2. The excess Rayleigh ratios, Rθ, compared to the standard liquid, toluene, were determined at each scattering angle for all the aqueous HeC solutions examined. As one of the typical SLS experimental results, the square of the scattering vector, q2, and the dependencies of the (Kc(Rθ)1)c=0(= limc0Kc(Rθ)1) data, so-called Berry plots [21], for the HeC170 sample are shown in a. As the HeC samples possess rather broad molar mass distributions, Berry plots rather than Zimm plots [22] were used to analyze the data in this study. The intercept determined from the solid line in a indicates Mw = 170 kg mol1, and the initial slope of the line indicates a radius of gyration Rg = 43.0 nm for HeC170. The c dependencies of the (Kc(Rθ)1)q=0(= limq0Kc(Rθ)1) data for the same HeC170 sample are shown in b. The intercept determined from the solid line in b yields the same Mw value as that obtained using the solid line in a, and the initial slope of the line indicates a second virial coefficient of A2 = 1.0 × 103 mL mol g2 for HeC170. Using essentially the same procedures as described above, the values of Mw, Rg and A2 were determined for each HeC sample examined in this study. summarizes these values.
Open in a separate windowThe dependencies of Rg and A2 on the Mw values of the HeC samples are shown in a,b, respectively. Based on the slope of the solid line in a, which is ~0.6, the relationship Rg Mw0.6 is approximately obtained. This Mw exponent is close to the values that are usually reported for flexible polymer chains dissolved in moderately good solvents [23]. However, we cannot simply conclude that the HeC samples behave as flexible polymer chains in aqueous solution, because the q dependence of the (Rθ (Kc)1)c=0 obtained in the SLS experiments and that of the S-WANS and S-WAXS data, which are discussed in detail in later sections, do not show flexible polymer chain behavior. The value of A2 indicates the strength of the interparticle interaction between two solute molecules. The decrease in the A2 value observed in b up to the Mw value of ~500 kg mol1 indicates that there is a decrease in the repulsive interaction between two HeC molecules with increasing Mw that leads to an increase in attractive interactions between HeC molecules with increasing Mw. After reaching its minimum, A2 displays a steep increase in its Mw dependence, as is clearly seen in b; this is related to an increase in repulsive interactions between HeC molecules with increasing Mw. The observed complicated Mw dependence of A2 in the HeC samples appears to be caused by conformational and structural changes induced by alterations in the intramolecular interactions between constituent segments of HeC molecules with increasing Mw.
Open in a separate windowAs the A2 values of most flexible and semiflexible polymer chains that maintain constant persistence lengths irrespective of Mw when dissolved in solutions show monotonous weak decreasing behavior with increasing Mw [23,24], the Mw dependence of A2 observed in b suggests a clear difference between the HeC molecules analyzed in this study and the usual flexible and semiflexible polymer chains from the viewpoint of intermolecular interactions. In the case of aqueous solutions of another water-soluble chemically modified cellulose ether, methyl cellulose, MC, the observed A2 decreases rather drastically with increasing Mw and does not show a subsequent steep increase up to an Mw value of ~1.0 × 103 kg mol1, as observed in b [17]. Thus, it is likely that the structural change that occurs in the aqueous HeC samples is not identical to that in the aqueous MC samples [17].
The q dependencies of Rθ(Kc)1c=0 data for all HeC samples are shown in on a double-logarithmic scale. For HeC samples with Mw values lower than 200 kg mol1, the Rθ(Kc)1c=0 data show weak q dependencies, for which suitable form factors, P(q), cannot be obtained precisely from the SLS data alone. However, the HeC samples with lower Mw values demonstrated obvious proportionality to q1 in their excess scattering intensities, ΔI(q)c1, in the data obtained in the S-WANS and S-WAXS experiments covering a q range higher than that of the SLS experiments, as discussed in detail in a later section. In a high q range of the SLS data, the HeC samples with Mw values higher than 500 kg mol1 clearly show the relationship Rθ(Kc)1c=0 q1, as seen in . As the relationship Rθ(Kc)1c=0 (or ΔI(q)c1) q1 indicates characteristic behavior of the form factors, P(q), of rigid rod particles in the q range higher than the reciprocal of rod particle length (L) [25,26] and Rθ(Kc)1c=0 theoretically corresponds to MwP(q), it is possible that the Rθ(Kc)1c=0 data for all the HeC samples in this study are describable based on the form factors of rigid rod particles that possess different L values that depend on the Mw of the sample.
Open in a separate windowThe solid lines shown in represent MwP(q) curves resulting from curve fitting to the Rθ(Kc)1c=0 data for each HeC sample assuming rigid rod particle form factors. In the curve fitting procedure, the open source software SasView [27] was employed to calculate rigid rod form factors [26], P(q). Varying L values, MwP(q) curves were fitted to the Rθ(Kc)1c=0 data to permit identification of the most adequate L values for each HeC sample. The q dependence of the P(q) curves in the q range covered by the SLS experiments (q < 4 × 102 nm1) was not sensitive to the diameter (d) of the assumed rigid rod particles when d was set at values smaller than, e.g., 10 nm. The values of L (and d) determined as the most adequate average values based on fitting of the data are shown in . As the observed agreement between the MwP(q) curves and the Rθ(Kc)1c=0 data is reasonable for HeC samples with Mw greater than 500 kg mol1, the rigid rod particle form factors appear to be suitable for describing the SLS behavior of HeC samples in aqueous solutions. The Rθ(Kc)1c=0 data for the HeC samples with Mw values lower than 100 kg mol1 display quite weak q dependence in the q range covered by the SLS experiments for the determination of MwP(q) curves precisely. Then, the combination of the q dependencies of the Rθ(Kc)1c=0 data and the excess scattering intensity data, ΔI(q)c1, resulting from the S-WANS and S-WAXS experiments will be quite useful to determine MwP(q) curves for the low-Mw HeC samples as discussed in detail in the next section.
shows the Mw dependencies of L and LRg1 determined for each HeC sample. Although the value of L increases monotonically with increasing Mw, the L value is not proportional to the Mw value, and the ratio LRg1 appears to remain at a constant value close to ~3.5 irrespective of Mw. As the relationship found in this study is close to the simple relationship L2 = 12Rg2, i.e., L(Rg)1 = 12 ~ 3.46, which holds in suspensions of rigid rod particles, the results might be interpreted as strongly supporting a rigid rod structure of the particles formed by HeC molecules in aqueous solution. However, the HeC molecules cannot have simply elongated straight conformations or systematic helical conformations because the L of the formed particles is not simply proportional to Mw, as described above. The average contour lengths (l) of the HeC molecules in each HeC sample can be calculated assuming the repeating length of the glucose unit to be 0.5 nm [28], and in this way a holding number defined as lL1, which indicates the average molecular chain number per cross section of the rod particles formed by the HeC molecules, can be calculated, considering that an essential characteristic of cellulose molecules that form the framework of HeC is that they prefer to assume a straight elongated conformation. The Mw dependence of the lL1 value for HeC samples is also shown in . For HeC samples of Mw less than 20 kg mol1, the lL1 value is not far from two. This observation suggests that short HeC molecules have hairpin-like particle structures with lL1 = 2 on average. The presence of a similar hairpin-like structure has already been demonstrated in aqueous solutions of MC and HpMC [16,17]. The observed change in the lL1 value with increasing Mw in suggests alterations in the size and shape of the cross sections of HeC molecules in aqueous solution. However, the SLS data cannot provide useful information in the length scale shorter than 10 nm1, which is related to the cross section of HeC molecules.
Open in a separate window3.2. S-WANS and S-WAXS Behaviors
The q dependencies of concentration-reduced excess scattering intensities, ΔIN(q)c1, determined via the S-WANS measurements for HeC87 at c = 0.005 and 0.010 g mL1, are shown in a. As the [η] value for HeC87 was determined to be 180 mL g1, the ΔIN(q)c1 data obtained at c = 0.005 g mL1 should be more reliable than those obtained under the condition of the so-called isolated state for HeC molecules given by c < [η]1. The difference between the ΔIN(q)c1 data obtained at these concentrations is small, as seen in a. Thus, the condition at c = 0.010 g mL1 is not far from the isolated state. One can easily recognize the relationship ΔI(q)c1 q1 in the q range 0.1 nm1 < q < 1.0 nm1; such a relationship is characteristic of rigid rod or long columnar particles with L > 10 nm. A steeper decrease in the ΔI(q)c1 data is observed over the q range greater than 2.0 nm1; there, two broad interference-type peaks are clearly recognized at q ~ 6.5 and 14 nm1, as seen in a. As the presence of two similar interference-type peaks has also been observed in aqueous solutions of MC and HpMC, it is speculated that the local structures assumed by several water-soluble chemically modified cellulose ethers have common characteristics showing these peaks [16,17]. The observed peak at ~6.5 nm1 corresponds to the periodic distance of ~(2π/6.5) 1.0 nm, close to the molecular size of cellobiose, the structural repeating unit of cellulose. Another periodic distance of 0.4 nm corresponding to the other peak at 14 nm1, 2π/14 ~ 4.5 nm, is not far from the separation between facing cellulose molecules in the crystalline structure of cellulose II [16,17].
Open in a separate windowThe solid line in a shows the curve fit to the ΔI(q)c1 data by SasView [27] assuming the rigid rod particle form factor, P(q), with L = 93 and d = 1.4 nm. Although the L value cannot be determined uniquely from the S-WANS data alone, the SLS data providing the value of Rg = 27 nm and the weak q dependence of Rθ(Kc)1c=0 data in the q range lower than 0.04 nm1 were useful in determining the L and d values. The SLS data multiplied by the constant f = 6.5 × 104 cm2 g2 mol, i.e., fRθ(Kc)1c=0, are also plotted in a. The value f = (6.5 ± 0.3) × 104 cm2 g2 mol connects the S-WANS and SLS data quite smoothly using the rigid rod form factor, maintaining the characteristics of almost flat P(q) in the range of q < 0.04 nm1 and P(q) q1 in the range of 0.1 nm1 q < 2.0 nm1. The agreement between the solid fit curve, fMwP(q), with the identical f value to the fRθ(Kc)1c=0 data and the experimental ΔIN(q)c1 data appears reasonable except for the presence of the two interference-type peaks. The broken line in the same figure represents the fit curve calculated assuming a rectangular columnar particle with L = 93 nm, width w1 = 1.8 nm and thickness w2 = 0.5 nm. As the difference between the fit curves indicated by the solid and broken lines is inconspicuous, especially in the q range below 2.5 nm1, we might conclude that these structural factors describe the local structure of HeC87 molecules rather reasonably. An elliptical rod particle [29] with structural parameters similar to those of the rectangular columnar particle would have a form factor, P(q), suitable for the ΔIN(q)c1 data seen in a.
Want more information on What Is HPMC Made From? Feel free to contact us.
Additional resources:How to use HPMC?
The S-WAXS measurements covered a similar q range to the S-WANS measurements in this study. To confirm the validity of the data obtained using these two techniques, we compared the q dependencies of the ΔIX(q)c1 data determined in S-WAXS measurements with those obtained from S-WANS measurements. As the ΔIX(q)c1 data were not converted into absolute values in this study, the mΔIX(q)c1 data multiplied by a certain numerical constant, m, can be used for comparison. b shows the q dependence of ΔIN(q)c1 for the HeC87 sample obtained at c = 0.005 g mL1 (the same data as seen in a) and that of mΔIX(q)c1 at c = 0., 0. and 0.010 g mL1 using the numerical constant m = 0.17. Although all the c values are rather low and the obtained ΔIN(q)c1 and mΔIX(q)c1 data are poorly dispersed, the agreement between the two sets of data, with the exception of the mΔIX(q)c1 data at c = 0.010 g mL1, is fairly good, especially in the q range 0.1 to 4.0 nm1; within that range, the scattering data are proportional to q1 up to q = 1.0 nm1 and decrease more steeply above that q value. The data obtained at c = 0.010 g mL1 clearly show substantially greater values than other data in the q range from 1.5 to 5.0 nm1 and show the interference-type peaks less significantly than mΔIX(q)c1 data at other lower c. It appears that the mΔIX(q)c1 data obtained from the S-WAXS measurements demonstrate the presence of the two interference peaks at q = 6.5 and 14 nm1 slightly more clearly than do the ΔIN(q)c1 (S-WANS) data. Based on the observed fair agreement between the ΔIN(q)c1 data and the mΔIX(q)c1 data in the q range 0.1 to 4.0 nm1, we might conclude that both the S-WANS measurements and the S-WAXS measurements show the precise q dependence of scattering data for isolated HeC molecules under the condition of c [η]1, as we expected.
The Benefits of Using Wholesale HPMC Powder
What is the difference between HEC and HPMC?
The mΔIX(q)c1 data for HeC at c = 1.0 × 103 g mL1 and those for HeC at c = 0.8 × 103 g mL1 are shown in a,b, respectively. The fRθ(Kc)1c=0 data for the HeC and HeC samples obtained from the SLS measurements and the fMwP(q) curves resulting from the rigid rod particle model are also included in a,b. As the f and m values used in b are also employed in a,b, the q dependencies of the mΔIX(q)c1 data in these figures are directly comparable with the fRθ(Kc)1c=0 data and the fMwP(q) curves quantitatively with respect to their magnitude. It is likely that the q range over which the relationship mΔIX(q)c1 q1 is observed becomes narrower with increasing Mw. In the case of HeC, the mΔIX(q)c1 data show a steeper decrease in magnitude with a negative exponent of q, obviously greater than unity, in the q range higher than ~0.8 nm1, as seen in a. A similar change in the q dependence of mΔIX(q)c1 data can also be recognized for HeC in the q range higher than ~0.3 nm1; this range is clearly lower than the q range observed for the solution of HeC(850), as seen in b. This suggests that there is a change in the local particle structure formed by HeC molecules that is a function of Mw. An increase in the diameter, d, of the rigid rod decreases the q range, showing the relationship mΔIX(q)c1 q1. The solid line indicating fMwP(q), shown in a, is the fit curve for the mΔIX(q)c1 data calculated using SasView [27] assuming the form factor of a rigid rod, P(q), with L = 420 nm and d = 3.0 nm. The agreement between the calculated curve and the data is reasonable in the q range below 1.0 nm1. It is likely that the mΔIX(q)c1 data have a certain characteristic q dependence that is related to the local structure of the formed particles in the q range higher than 2.0 nm1. However, the poor quality of the obtained data due to the low concentrations of HeC used in the experiments did not allow us to distinguish between a more local particle structure formed by HeC molecules and other sophisticated particle models such as rectangular columnar and/or elliptical rod models.
Open in a separate windowHeC molecules also appear to have rigid rod-like local structures, as clearly suggested by the dependence of the mΔIX(q)c1 data on q seen in b. The solid line representing fMwP(q) in b indicates the form factor, P(q), of a rigid rod with L = 500 nm and d = 5.0 nm as a function of q. The agreement between the fitted curve obtained using the rigid rod particle model and the mΔIX(q)c1 data is fair, especially in the q range lower than 1.0 nm1. We did not consider more local structures of particles formed by HeC(900) in aqueous solution due to the poor quality of the data in the q range higher than 1 nm1, as also seen in b. However, despite the low quality of the data, two interference peaks at approximately 6.5 and 14 nm1 can be discerned, as seen in a,b.
The fair agreement between the fitted curves obtained assuming the form factors of rigid rods with diameter, d, varying from 1.4 to 5.0 nm with increasing Mw and the mΔIX(q)c1 data obtained for aqueous solutions of HeC samples, as seen in and , strongly suggests that the particles formed by the HeC molecules can be described as having local structures and conformations that correspond to rigid rods with diameters that increase gradually with increasing Mw.
3.3. Viscometric Behaviors
The Mw dependence of the intrinsic viscosity, [η], of the HeC samples in aqueous solution is shown in . Although the relationship [η] Mw~0.67, which is usually observed for flexible polymer chain samples dissolved in good solvents [23], appears at a glance to hold, we would like to consider this relationship based on the idea of formation of rigid rod particles by the HeC samples. This consideration is based on the fact that all the scattering data obtained in the SLS and S-WANS and S-WAXS experiments can be fairly well explained using a form factor corresponding to that of rigid rod particles. Based on this consideration, we do not think that the lengths, L, of the formed particles are simply proportional to Mw and that the radii, d, of the formed rigid rod particles maintain a constant value irrespective of Mw, despite the fact that this is a usually accepted idea.
Open in a separate windowAccording to theoretical calculations [30,31], the intrinsic viscosity of a suspension of rigid rod particles ([η]cal) with viscometric particle length (Lη) and dη is given as Equation (1).
[η]cal=2πNALη345Mw{ln(Lη/dη)+Cη}
(1)
In Equation (1), NA and Cη represent, respectively, Avogadros number and a numerical constant that shows the contribution of hydrodynamic interaction formulated using polynomials of the ratio Lη/dη [30]. As the first simple choice, we can select the relationship Lη = L and dη = d to calculate [η]cal. It is known that Cη approaches a constant value of 0.93 when Lη is much longer than dη. We used this value in our calculations of [η]cal. The solid line representing [η]cal1 in shows the Mw dependence of [η]cal resulting from the first simple choice. Although the agreement between the calculated [η]cal1 curve and the experimental data is not perfect, the Mw dependence of the [η] data is reproduced semiquantitatively. We then tested a second assumption, Lη = 0.87L and dη = d; the curve obtained in that way is shown in as the broken curve labeled [η]cal2. The agreement between the [η]cal2 curve and the [η] data is much better than that between [η]cal1 and the [η] data. Changing the dη value, e.g., using dη = 0.87d, hardly affected the value of [η]cal. Consequently, we might conclude that the viscometric behavior of HeC samples in aqueous solution is reasonably described as corresponding to that of rigid rod particles with viscometric lengths slightly shorter than the structural lengths determined using scattering methods such as SLS, S-WANS and S-WAXS. Viscometric lengths that are shorter than structural lengths have also been reported for aqueous solutions of MC samples [17] and for N-methylpyrrolidone solutions of poly(vinylidene difluoride) [32].
3.4. Diffusional Behaviors
The first cumulants, Γ1, calculated from the initial slopes of the obtained autocorrelation functions of the scattered light electric field provide translational diffusion coefficients, Dt, of particles formed by solute molecules dissolved in sample solutions. As typical experimental results for HeC samples in aqueous solutions, a,b show the q2 dependencies of Γ1 data for the shortest (HeC87) and the longest (HeC900) samples, respectively. The Γ1 data for the HeC87 sample seen in a can be described as following a straight line with a constant slope over the q2 range covered in this study. In this case, the value of Dt can be simply evaluated as the constant slope of 2.3 × 1011 m2 s1. However, the Γ1 data for the HeC sample shown in b are not simply proportional to q2; instead, they show a sigmoidal shape dependence. For Γ1 data without linear q2 dependence, the Dt value can be obtained from the initial slope of the line conforming to the Γ1 data using the equation Dt = limq20 Γ1q2. In the case of large particles such as HeC, the Γ1 data reflect the contribution of rotational diffusion, especially in the high-q2 region. When the Γ1 data possess another Γ1 q2 relationship for which the proportional coefficient is identical to Dt for the high-q2 region, the q2 dependence of the Γ1 data can be approximately described as Γ1 = 6Dr + Dt q2 [17,33,34]. The rotational diffusion coefficient, Dr, can then be evaluated from the intercepts of the straight lines, which follow the Γ1 data in the high-q2 range and are extrapolated to q2 = 0. This is shown in b for the HeC sample. However, in this study, the values of Dr were obtained only for the three high-Mw HeC samples. Although depolarized dynamic light scattering (DDLS) techniques [33] are better methods for determining Dr values for solute particles and we, of course, performed some DDLS measurements, scattering intensity data sufficient to determine Dr values precisely were not obtained under depolarized conditions for all the samples examined in this study.
Open in a separate windowThe Mw dependencies of the obtained Dt and Dr data for the HeC samples in aqueous solution are shown in a. The Dt data for the HeC samples appear at a glance to demonstrate the relationship Dt Mw0.65, which is usually observed for flexible polymer chains in solution. However, because the SLS, S-WANS, S-WAXS and viscometric data strongly suggest that HeC molecules do not assume simple flexible polymer chain conformations and structures but rather appear as rigid rod-like structures in aqueous solution, we discuss the Dt and Dr data based on the rigid rod particle model [30]. According to Ortega and García de la Torre [30], Dr and Dt are theoretically expressed as
Dt cal=kBT{ln(Lη/dη)+Ct}3πηwLη,
(2)
Dr cal=3kBT{ln(Lη/dη)+Cr}πηwLη3,
(3)
where kBT, T, Ct and Cr represent, respectively, the Boltzmann constant, the absolute temperature and numerical constants describing the contribution of hydrodynamic interactions for Dt and Dr. The values of Ct and Cr are given as Lη/dη polynomials [30]. The solid lines shown in a show the theoretical Dt cal1 and Dr cal1 calculated simply assuming Lh = L and dh = d. The broken lines labeled Dt cal2 and Dr cal2 in a were obtained assuming Lh = 0.87L and dh = d, the same values that were used in the evaluation of the Mw dependency of the viscometric [η] data. The observed differences between Dt cal1 and Dt cal2 and between Dr cal1 and Dr cal2 are not significant. As the agreement between the obtained Dt data and Dt cal1 (and Dt cal2) and between the Dr data and Dr cal1 (and Dr cal2) is reasonable, we might conclude that the rigid rod particle model can explain the Mw dependency of the Dt and Dr data for the HeC samples examined in this study. Consequently, the existence of a rigid rod-like conformation and structure of HeC molecules in aqueous solution is strongly supported from the viewpoint of diffusional behavior.
Open in a separate windowThe conformations and structures of solute molecules can be considered based on the value of the so-called shape factor (ρ) of the molecules. This factor is defined as the ratio of Rg to the hydrodynamic radius (Rh) of the molecule given as Rh = kBT(6πDt)1. If the particles formed by HeC molecules simply assume flexible coil-like conformations and structures in aqueous solution, the particles have a shape factor of ρ ~ 1.6 irrespective of the Mw of the particles [30]. The reason for this constant ρ value is that an identical Mw exponent is usually observed for both the Rg and Rh ( Dt1) data for many flexible polymer chain systems. On the other hand, if the particles of HeC molecules have a rigid rod-like conformation, the shape factor should satisfy the relationship ρ = 0.18 + 0.58ln(Lhdh1) for long particles [17,30] for which Lhdh1 > 10. b shows the dependence of the ρ data on ln(Lhdh1) for all the HeC samples in aqueous solution evaluated using the simple first condition, Lh = L and dh = d, and the second condition, Lh = 0.87L and dh = d, as assumed in the discussion of viscometric behavior. Here, we must note that the relationship Lhdh1 > 10 is well satisfied for all the HeC sample solutions examined according to the SLS data analysis in which the rigid rod particle form factor above is assumed. The ρ data present inconstant values significantly greater than 1.6 and proportional to ln(Lhdh1); they approximately follow the theoretically predicted solid line, ρ = 0.18 + 0.58ln(Lhdh1), irrespective of the choice of conditions for Lh, as shown in b. These observations regarding the ρ data also strongly suggest that a rigid rod conformation and structure reasonably describe the formed particle structure of HeC molecules in aqueous solution.
We very recently reported that commercially available methyl cellulose, MC, samples also assume long rigid rod-like conformations and structures in aqueous solution irrespective of their Mw values, similar to the HeC samples in this study [30]. Therefore, it is likely that commercially available water-soluble chemically modified cellulose ethers such as HeC and MC samples have a tendency to assume rigid rod-like conformations and structures in aqueous solution and that this is an essential characteristic of these compounds that results from the strong physicochemical features of cellulose.
The company is the world’s best mortar additives supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.
Comments
0