Do acoustic slat panels really work?
Do acoustic slat panels really work?
Hi @Onearmman,
Deco Sound Product Page
In answer to your question, yes, these panels do work and reduce sound transmission due to their acoustic properties. However, considering the type of noise you're experiencing is already travelling through a brick wall, I suspect although these panels will help, they might not resolve your issue entirely. Their felt backing will mechanically isolate them from the wall, helping to dampen any sound vibrations travelling through it.
It's important to understand that these are wall panels with acoustic properties, not an acoustic panel specifically designed to stop sound. In saying that, though, I don't think you are going to find any dedicated acoustic panels that look particularly attractive and certainly not the same as these.
There will be a noticeable difference in noise transmission once you've installed them, but I just want you to be aware that they are not designed to block all levels of sound entirely.
Please let me know if you have any questions.
Mitchell
How Do Acoustic Panels Work? | Dividers | Ceiling Baffles
Blog
How Do Acoustic Panels Work?
Despite having an engineering degree, I somehow found myself in the marketing world. So while Ill attempt to explain this field of science in a clear, marketing-friendly way, you may need to stick with me while my inner, data-loving self comes out. Lets dive in.
Will acoustic panels make my space quieter?
Probably, but were getting ahead of ourselves a bit.
What is acoustics?
At its core, acoustics is the study of sound how sound is created, how sound travels, and how sound eventually dies.
Physically, sound can be thought of as little, invisible vibrating waves that travel all around us. And while these vibrating waves are everywhere in our world, its only when they come in contact with our eardrums that our brains are able to convert these vibrations into something that makes sense. (And to answer the age-old question, yes, even if no one is around to hear it, that tree still makes a sound when it falls).
Now despite being invisible, were able to measure these sound waves and learn about them based on some of their physical properties.
Loudness The height of a waves crest determines its loudness. The higher the crest, the louder the sound. Loudness is measured in decibels.
Pitch The proximity of a waves crest and troughs determines its frequency. The closer these crests or troughs are to one another, the higher-pitched the sound. Pitch is measured in hertz.
And while a better understanding of acoustics may help your Tuesday night bar trivia score, it wont make your office any quieter. Fortunately, modern technology has allowed us to take this field of science and layer real-world applications on top of it.
So lets get practical.
Are you interested in learning more about Acoustic Dividers? Contact us today to secure an expert consultation!
When sound waves interact with a material one of three things will happen to the wave:
- Absorbed Part of the sound wave will be swallowed by the material
- Reflected Part of the sound wave will bounce off the material
- Transmitted Part of the sound wave will travel through the material
Knowing these differences, we can begin to grade materials based on their acoustic properties
NRC Rating
A Noise Reduction Coefficient (NRC) is a rating of how much sound a material can absorb. Measured on a 0 to 1 scale, materials with a 0.0 grade will absorb no sound while materials with a 1.0 grade will absorb all of the sounds they come in contact with.
To determine a materials NRC rating, tests are done at a range of pitches. The final NRC rating is an average of these different pitch ratings.
When working on improving the acoustics of a space, always consider the materials NRC rating.
So, I can improve the acoustics of my space by just putting material with a high NRC rating everywhere?
Well yes, but itd be expensive and probably look bad. A better plan is to strategically place acoustic material throughout the space. But to understand where acoustic material should be placed, we need to understand how sound travels around a room.
The sounds we hear are a combination of direct and reflected waves. Direct sound waves come unobstructed from the source to the receiver while reflected sound waves bounce off other objects before reaching the receiver.
Reflected Sound Waves
Echoes are the best way to understand reflected sound waves. If youve ever been to an empty gym or warehouse, you know the phenomenon. You can shout anything (but the unwritten rule is that you have to shout echo), wait a few seconds, and then youll hear your voice reverberate back. Fun to experience in an empty warehouse, but miserable to experience in your office.
While not as dramatic in the modern office, most of todays workspaces have an acoustic reverberation problem. Delayed, reflected sounds pester us while were trying to get into a focus zone or brainstorm ideas with a colleague.
Fortunately, we can use design to combat these issues.
The best way to reduce reflected sounds is through acoustic wall tiles and acoustic ceiling baffles. These products are designed with soft, porous materials with a high NRC rating. And in the case of ceiling baffles, the sound that is reflected back is reflected into another baffle thatll further reduce the waves strength.
Adios, echoes.
Direct Sound waves
Direct sound waves are simpler to understand. While reflected sound waves do contribute to a spaces loudness, direct sound waves are often the largest offender.
To reduce direct sounds, wed always recommend starting with a form of division. From room dividers to desk dividers, there are plenty of options and styles available to fit your environment. However, if loudness is an issue in your space, be sure your divider has acoustic panels 3 to 7 off the ground. As voices are often the source of excessive loudness, 3 to 7 off the ground is the sweet spot to reduce direct sound waves from people either sitting or standing.
But for best results, we recommend designing against reflected sound waves and direct sound waves.
Typically this looks like a combination of acoustic dividers and acoustic ceiling baffles.
And when spaces are properly designed with acoustic solutions, the results speak for themselves.
In conclusion, the bullet points to remember are:
- Materials with a high NRC rating can absorb sound waves
- Direct sound waves are best stopped with desk dividers or wall dividers
- Reflected sound waves are best stopped with ceiling baffles and wall tiles
Ready to turn down the volume in your space? Our team is standing by, ready to help.
P.S. We turned this page into an easily sharable PDF. If thats the kind of thing youre into.
P.S.S. If you want to a creative way to bring acoustics into your office, check out our Arbor panels.
Contact us to discuss your requirements of 3D Acoustic Panels. Our experienced sales team can help you identify the options that best suit your needs.
Comments
0